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Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AL Each section of the Venn diagram includes an example of an AI technology.
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Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
first wave started with cybernetics in the 1940s-1960s, with the development of theories
of biological learning (McCulloch and Pitts, 1943; Hebb, 1949) and implementations of
the first models such as the perceptron (Rosenblatt, 105%) allowing the training of a single
neuron. The second wave started with the connectionist approach of the 1980-1995 period,

with back-propagation (Rumelhart ¢f o/, 1986a) to train a neural network with one or two
hidden layers. The current and third wave, deep learning, started around 2006 (Ilinton
et al., 2006; Bengio et al., 2007; Ranzato et al., 2007a), and is just now appearing in book

form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.



Increasing dataset size over time
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Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Carson,
1900; Gosset, 1908; Anderson, 1935; Fisher, 1036). In the 1950s through 1980s, the pioneers
of biologically inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (\Widrow
and Hoff, 1960; Rumelhart et al., 1986b). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in Fig. 1.9) of scans of
handwritten numbers (LeCun of ol 10980). In the first decade of the 2000s, more
sophisticated datasets of this same size, such as the CIFAR-10 dataset (Irizhevsky and
Hinton, 2009) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (Netzer of al.,
2011), various versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky
et al,, 2014a), and the Sports-1M dataset (Iarpathy ef al, 2011). At the top of the
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard (Brown ¢f o/, 1990) and the WMT 2014 English to French
dataset (Schwenlk, 2011) are typically far ahead of other dataset sizes.
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Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0-9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.



Number of connections per neuron over time
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Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from Wikipedia (2015).

1. Adaptive linear element (\Widrow and Hoff, 1960)
Neocognitron (Fukushima, 1980)

GPU-accelerated convolutional network (C'hellapilla «f al, 2006)
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10. GoogLeNet (Szegedy et al., 2014a)



Increasing neural network size over time
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)
2. Adaptive linear element (\Widrow anc 160)
3. Neocognitron (Fukushima, 1950)
4. Early back-propagation network (Humelhart ef al, 19586h)
5. Recurrent neural network for speech recognition (Hobinson and Fallside, 1991)
6. Multilayer perceptron for speech recognition (Hengio «f al, 1991)
7. Mean field sigmoid belief network (Saul et al., 1996)
8. LeNet-5 (LeCun et al., 1998b)
9. Echo state network (Jaeger and Haas, 2004)
10. Deep belief network (Hinton «f al., 2006)
11. GPU-accelerated convolutional network (Chellapilla ot al, 20006)
12. Deep Boltzmann machine (Salakhutdine nd Hinton, 2009a)
13. GPU-accelerated deep belief network (Raina «f al, 2009)
14. Unsupervised convolutional network (Jarrett of al, 2000)
15. GPU-accelerated multilayer perceptron (Ciresan ot al., 2010)
16. OMP-1 network (Coates and Ng, 2011)
17. Distributed autoencoder (Le «f al, 2012)
18. Multi-GPU convolutional network (IKrizhevsky of al., 2012)
19. COTS HPC unsupervised convolutional network (Coates of al, 2013)

20. GoogLeNet (Szegedy et al., 2014a)
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Figure 1.5: Flowcharts showing how the different parts of an Al system relate to each

other within different AI disciplines. Shaded boxes indicate components that are able to
learn from data.
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Figure 1.1: Example of different representations: suppose we want to separate two
categories of data by drawing a line between them in a scatterplot. In the plot on the left,
we represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple to
solve with a vertical line. (Figure produced in collaboration with David Warde-Farley)
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Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that we
are able to observe. Then a series of hidden layers extracts increasingly abstract features
from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. (Right)In this style, we draw a node in the graph for
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrixW describes

the mapping from x to h, and a vector w describes the mapping from h to y. We

typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.
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e Capacidad de aproximacién de una red (e.g., cuadratica, seno,
valor absoluto y Heavside). Los datos son los 50 puntos
azules. Se entrena una red con dos capas, tres neuronas,
funcidn de activacion tanh, salidas lineales. Las salidas de las
tres neuronas ocultas se muestran con lineas punteadas.
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@ Capacidad de aproximacién de una red: las lineas punteadas
son las salidas de cada una de las dos neuronas
(hipersuperficies). Funciones de activacién tanh y salida
logistica sigmoid.

@ La linea verde es el clasificador Bayesiano. La roja el
clasificador de la red.
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e Likely events should have low information content, and in the extreme case,
events that are guaranteed to happen should have no information content
whatsoever.

e Less likely events should have higher information content.

e Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
much information as finding out that a tossed coin has come up as heads
once.
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